Observation of Half-Integer Quantum Hall Effect in Single-Layer Graphene Using Pulse Magnet
نویسندگان
چکیده
We report on the magnetotransport measurement on a single-layer graphene in pulsed magnetic fields up to B = 53 T. With either electronor hole-type charge carriers, the Hall resistance RH is quantized into RH = (h/e )ν with ν = ±2, ±6, and ±10, which demonstrates the observation of a half-integer quantum Hall effect (QHE). At B = 50 T, the half-integer QHE is even observed at room temperature in spite of a conventional carrier mobility μ = 4000 cm/Vs.
منابع مشابه
Experimental Observation of Quantum Hall Effect and Berry ’ s Phase in Graphene
When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal realization of such a 2D system. Its behaviour is, however, expected to differ dramatically from the well-studied case of quantum wells in convention...
متن کاملpH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation
In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...
متن کاملQuantum Hall effect in graphene: Status and prospects
Graphene is the recently discovered two-dimensional (2D) one atom thick allotrope of carbon. Electrons in graphene, obeying a linear dispersion relation, behave like massless relativistic particles. It is a 2D nanomaterial with many peculiar properties. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit intrinsic mobility and can travel micr...
متن کاملInteger quantum Hall effect in trilayer graphene.
By using high-magnetic fields (up to 60 T), we observe compelling evidence of the integer quantum Hall effect in trilayer graphene. The magnetotransport fingerprints are similar to those of the graphene monolayer, except for the absence of a plateau at a filling factor of ν=2. At a very low filling factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers indu...
متن کاملFinding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model
In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which is integer and constant and k is wave vector). The longitudinal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008